https://doi.org/10.25678/0002WJ
    
    
    
      
    
    
   
  
  
    
  
  
  
  
    
        
            
        
            
                
        
    
    
        
        
            
                        
 
                    
                  Data for: The Value of Human Data Annotation for Machine Learning based Anomaly Detection in Environmental Systems
Data and Resources
Citation
This Data Package
Russo, S., Hess, A., Lürig, M., Matthews, B., Minaudo, C., Morgenroth, E., et al. (2020). Data for: The Value of Human Data Annotation for Machine Learning based Anomaly Detection in Environmental Systems (Version 1.0). Eawag: Swiss Federal Institute of Aquatic Science and Technology. https://doi.org/10.25678/0002WJ
            
                
            
        The associated article
Russo, S., Besmer, M. D., Blumensaat, F., Bouffard, D., Disch, A., Hammes, F., et al. (2021). The Value of Human Data Annotation for Machine Learning based Anomaly Detection in Environmental Systems. Water Research, 117695. https://doi.org/10.1016/j.watres.2021.117695
                
                    
                
            Metadata
| Author | 
    
  | 
                        
|---|---|
| Keywords | wastewater,flow cytometry,urban drainage,aquatic ecology,anomaly detection,machine learning | 
| Variables | 
    
  | 
                        
| Taxa (scientific names) | 
  | 
                        
| Organisms (generic terms) | 
  | 
                        
| Systems | 
  | 
                        
| Timerange | 
  | 
                        
| Review Level | domain specific | 
| Curator | Russo, Stefania | 
| Contact | stefania.russo@eawag.ch | 
| DOI | 10.25678/0002WJ | 
 Open Data