https://doi.org/10.25678/0002WJ
Data for: The Value of Human Data Annotation for Machine Learning based Anomaly Detection in Environmental Systems
Data and Resources
Citation
This Data Package
Russo, S., Hess, A., Lürig, M., Matthews, B., Minaudo, C., Morgenroth, E., et al. (2020). Data for: The Value of Human Data Annotation for Machine Learning based Anomaly Detection in Environmental Systems (Version 1.0). Eawag: Swiss Federal Institute of Aquatic Science and Technology. https://doi.org/10.25678/0002WJ
The associated article
Russo, S., Besmer, M. D., Blumensaat, F., Bouffard, D., Disch, A., Hammes, F., et al. (2021). The Value of Human Data Annotation for Machine Learning based Anomaly Detection in Environmental Systems. Water Research, 117695. https://doi.org/10.1016/j.watres.2021.117695
Metadata
Author |
|
---|---|
Keywords | wastewater,flow cytometry,urban drainage,aquatic ecology,anomaly detection,machine learning |
Variables |
|
Taxa (scientific names) |
|
Organisms (generic terms) |
|
Systems |
|
Timerange |
|
Review Level | domain specific |
Curator | Russo, Stefania |
Contact | stefania.russo@eawag.ch |
DOI | 10.25678/0002WJ |