Changes
On January 30, 2023 at 2:50:19 PM UTC,
-
Added resource 1-Data.zip to Data for: Penetrative Convection Modifies the Dynamics of Downslope Gravity Currents
f | 1 | { | f | 1 | { |
2 | "author": "[\"Doda, Tomy\", \"Ulloa, Hugo. N.\", \"Ram\\u00f3n, | 2 | "author": "[\"Doda, Tomy\", \"Ulloa, Hugo. N.\", \"Ram\\u00f3n, | ||
3 | Cintia L.\", \"W\\u00fcest, Alfred\", \"Bouffard, Damien\"]", | 3 | Cintia L.\", \"W\\u00fcest, Alfred\", \"Bouffard, Damien\"]", | ||
4 | "author_email": null, | 4 | "author_email": null, | ||
5 | "creator_user_id": "064a4293-f097-4005-98d5-65b49b35ccf3", | 5 | "creator_user_id": "064a4293-f097-4005-98d5-65b49b35ccf3", | ||
6 | "extras": [ | 6 | "extras": [ | ||
7 | { | 7 | { | ||
8 | "key": "citation", | 8 | "key": "citation", | ||
9 | "value": "Doda, T., Ulloa, H. N., Ram\u00f3n, C. L., W\u00fcest, | 9 | "value": "Doda, T., Ulloa, H. N., Ram\u00f3n, C. L., W\u00fcest, | ||
10 | A., & Bouffard, D. (2022). Data for: Penetrative Convection | 10 | A., & Bouffard, D. (2022). Data for: Penetrative Convection | ||
11 | Modifies the Dynamics of Downslope Gravity Currents (Version 1.0) | 11 | Modifies the Dynamics of Downslope Gravity Currents (Version 1.0) | ||
12 | [Data set]. Eawag: Swiss Federal Institute of Aquatic Science and | 12 | [Data set]. Eawag: Swiss Federal Institute of Aquatic Science and | ||
13 | Technology. https://doi.org/10.25678/0007PR" | 13 | Technology. https://doi.org/10.25678/0007PR" | ||
14 | }, | 14 | }, | ||
15 | { | 15 | { | ||
16 | "key": "citation_publication", | 16 | "key": "citation_publication", | ||
17 | "value": "Doda, T., Ulloa, H. N., Ram\u00f3n, C. L., W\u00fcest, | 17 | "value": "Doda, T., Ulloa, H. N., Ram\u00f3n, C. L., W\u00fcest, | ||
18 | A., & Bouffard, D. (2023). Penetrative Convection Modifies the | 18 | A., & Bouffard, D. (2023). Penetrative Convection Modifies the | ||
19 | Dynamics of Downslope Gravity Currents. Geophysical Research Letters, | 19 | Dynamics of Downslope Gravity Currents. Geophysical Research Letters, | ||
20 | 50(2). https://doi.org/10.1029/2022gl100633\n" | 20 | 50(2). https://doi.org/10.1029/2022gl100633\n" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "key": "doi", | 23 | "key": "doi", | ||
24 | "value": "10.25678/0007PR" | 24 | "value": "10.25678/0007PR" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "key": "geographic_name", | 27 | "key": "geographic_name", | ||
28 | "value": "[\"Rotsee\"]" | 28 | "value": "[\"Rotsee\"]" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "key": "has_part", | 31 | "key": "has_part", | ||
32 | "value": "[]" | 32 | "value": "[]" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "key": "is_part_of", | 35 | "key": "is_part_of", | ||
36 | "value": "[]" | 36 | "value": "[]" | ||
37 | }, | 37 | }, | ||
38 | { | 38 | { | ||
39 | "key": "ispublication", | 39 | "key": "ispublication", | ||
40 | "value": "true" | 40 | "value": "true" | ||
41 | }, | 41 | }, | ||
42 | { | 42 | { | ||
43 | "key": "open_data", | 43 | "key": "open_data", | ||
44 | "value": "true" | 44 | "value": "true" | ||
45 | }, | 45 | }, | ||
46 | { | 46 | { | ||
47 | "key": "paper_doi", | 47 | "key": "paper_doi", | ||
48 | "value": "10.1029/2022GL100633" | 48 | "value": "10.1029/2022GL100633" | ||
49 | }, | 49 | }, | ||
50 | { | 50 | { | ||
51 | "key": "publicationlink", | 51 | "key": "publicationlink", | ||
52 | "value": "https://doi.org/10.1029/2022GL100633" | 52 | "value": "https://doi.org/10.1029/2022GL100633" | ||
53 | }, | 53 | }, | ||
54 | { | 54 | { | ||
55 | "key": "review_level", | 55 | "key": "review_level", | ||
56 | "value": "none" | 56 | "value": "none" | ||
57 | }, | 57 | }, | ||
58 | { | 58 | { | ||
59 | "key": "spatial", | 59 | "key": "spatial", | ||
60 | "value": "{\"type\": \"Point\", \"coordinates\": | 60 | "value": "{\"type\": \"Point\", \"coordinates\": | ||
61 | [8.32461,47.07485] }" | 61 | [8.32461,47.07485] }" | ||
62 | }, | 62 | }, | ||
63 | { | 63 | { | ||
64 | "key": "status", | 64 | "key": "status", | ||
65 | "value": "complete" | 65 | "value": "complete" | ||
66 | }, | 66 | }, | ||
67 | { | 67 | { | ||
68 | "key": "substances", | 68 | "key": "substances", | ||
69 | "value": "[]" | 69 | "value": "[]" | ||
70 | }, | 70 | }, | ||
71 | { | 71 | { | ||
72 | "key": "substances_generic", | 72 | "key": "substances_generic", | ||
73 | "value": "[]" | 73 | "value": "[]" | ||
74 | }, | 74 | }, | ||
75 | { | 75 | { | ||
76 | "key": "systems", | 76 | "key": "systems", | ||
77 | "value": "[\"lake\"]" | 77 | "value": "[\"lake\"]" | ||
78 | }, | 78 | }, | ||
79 | { | 79 | { | ||
80 | "key": "tags_string", | 80 | "key": "tags_string", | ||
81 | "value": "convective plumes,density current,differential | 81 | "value": "convective plumes,density current,differential | ||
82 | cooling,interface fluctuations,lateral transport" | 82 | cooling,interface fluctuations,lateral transport" | ||
83 | }, | 83 | }, | ||
84 | { | 84 | { | ||
85 | "key": "taxa", | 85 | "key": "taxa", | ||
86 | "value": "[]" | 86 | "value": "[]" | ||
87 | }, | 87 | }, | ||
88 | { | 88 | { | ||
89 | "key": "taxa_generic", | 89 | "key": "taxa_generic", | ||
90 | "value": "[]" | 90 | "value": "[]" | ||
91 | }, | 91 | }, | ||
92 | { | 92 | { | ||
93 | "key": "timerange", | 93 | "key": "timerange", | ||
94 | "value": "[\"[2019-10-10 TO 2019-11-12]\"]" | 94 | "value": "[\"[2019-10-10 TO 2019-11-12]\"]" | ||
95 | }, | 95 | }, | ||
96 | { | 96 | { | ||
97 | "key": "variables", | 97 | "key": "variables", | ||
98 | "value": "[\"temperature\", \"velocity\"]" | 98 | "value": "[\"temperature\", \"velocity\"]" | ||
99 | } | 99 | } | ||
100 | ], | 100 | ], | ||
101 | "groups": [], | 101 | "groups": [], | ||
102 | "id": "6e05bf50-9936-4b50-8c2c-1b9e83c7fb35", | 102 | "id": "6e05bf50-9936-4b50-8c2c-1b9e83c7fb35", | ||
103 | "isopen": false, | 103 | "isopen": false, | ||
104 | "license_id": null, | 104 | "license_id": null, | ||
105 | "license_title": null, | 105 | "license_title": null, | ||
106 | "maintainer": "Doda, Tomy", | 106 | "maintainer": "Doda, Tomy", | ||
107 | "maintainer_email": "Bouffard, Damien <Damien.Bouffard@eawag.ch>", | 107 | "maintainer_email": "Bouffard, Damien <Damien.Bouffard@eawag.ch>", | ||
108 | "metadata_created": "2023-01-30T14:42:48.061296", | 108 | "metadata_created": "2023-01-30T14:42:48.061296", | ||
109 | "metadata_modified": "2023-01-30T14:42:48.061306", | 109 | "metadata_modified": "2023-01-30T14:42:48.061306", | ||
110 | "name": | 110 | "name": | ||
111 | ative-convection-modifies-the-dynamics-of-downslope-gravity-currents", | 111 | ative-convection-modifies-the-dynamics-of-downslope-gravity-currents", | ||
112 | "notes": "Gravity currents contribute to the transport of heat and | 112 | "notes": "Gravity currents contribute to the transport of heat and | ||
113 | mass in atmospheric and aquatic environments. In aquatic systems | 113 | mass in atmospheric and aquatic environments. In aquatic systems | ||
114 | subject to daily surface cooling, gravity currents propagate through | 114 | subject to daily surface cooling, gravity currents propagate through | ||
115 | turbulent convective surroundings. Yet, the effects of thermal | 115 | turbulent convective surroundings. Yet, the effects of thermal | ||
116 | convection on aquatic gravity currents remain to be quantified. This | 116 | convection on aquatic gravity currents remain to be quantified. This | ||
117 | paper demonstrates how the interaction between penetrative convection | 117 | paper demonstrates how the interaction between penetrative convection | ||
118 | and downslope gravity currents impacts the fluid dynamics and | 118 | and downslope gravity currents impacts the fluid dynamics and | ||
119 | transport across littoral aquatic systems. We performed field | 119 | transport across littoral aquatic systems. We performed field | ||
120 | experiments in a wind-sheltered lake experiencing differential cooling | 120 | experiments in a wind-sheltered lake experiencing differential cooling | ||
121 | to resolve the dynamics of thermally driven gravity currents in | 121 | to resolve the dynamics of thermally driven gravity currents in | ||
122 | convective environments. Our in situ observations reveal that | 122 | convective environments. Our in situ observations reveal that | ||
123 | convective plumes penetrate gravity currents, generating large | 123 | convective plumes penetrate gravity currents, generating large | ||
124 | vertical fluctuations that foster the erosion of the stratified layer. | 124 | vertical fluctuations that foster the erosion of the stratified layer. | ||
125 | This enhanced vertical mixing destroys the stratified downslope flow | 125 | This enhanced vertical mixing destroys the stratified downslope flow | ||
126 | and limits the basin-scale transport. Our results demonstrate that the | 126 | and limits the basin-scale transport. Our results demonstrate that the | ||
127 | interaction between penetrative convection and downslope gravity | 127 | interaction between penetrative convection and downslope gravity | ||
128 | currents controls the littoral-pelagic connectivity in aquatic | 128 | currents controls the littoral-pelagic connectivity in aquatic | ||
129 | ecosystems.", | 129 | ecosystems.", | ||
n | 130 | "num_resources": 0, | n | 130 | "num_resources": 1, |
131 | "num_tags": 5, | 131 | "num_tags": 5, | ||
132 | "organization": { | 132 | "organization": { | ||
133 | "approval_status": "approved", | 133 | "approval_status": "approved", | ||
134 | "created": "2019-09-18T14:11:50.244436", | 134 | "created": "2019-09-18T14:11:50.244436", | ||
135 | "description": "The Aquatic Physics Group studies physical | 135 | "description": "The Aquatic Physics Group studies physical | ||
136 | processes mainly in lakes, reservoirs and rivers. We have two | 136 | processes mainly in lakes, reservoirs and rivers. We have two | ||
137 | approaches:\r\n\r\n+ From small scale in situ turbulence measurements | 137 | approaches:\r\n\r\n+ From small scale in situ turbulence measurements | ||
138 | to large scale three-dimensional models.\r\n\r\n+ Aquatic physics as a | 138 | to large scale three-dimensional models.\r\n\r\n+ Aquatic physics as a | ||
139 | tool to understand aquatic systems.\r\n\r\nOur research consists in | 139 | tool to understand aquatic systems.\r\n\r\nOur research consists in | ||
140 | dedicated in-situ measurements together with large scale three | 140 | dedicated in-situ measurements together with large scale three | ||
141 | dimensional numerical models. This approach is perfectly fitted to | 141 | dimensional numerical models. This approach is perfectly fitted to | ||
142 | understand the spatial variability of lakes.", | 142 | understand the spatial variability of lakes.", | ||
143 | "id": "6870be85-b2a9-45dc-9de4-4a8c2e25dbaf", | 143 | "id": "6870be85-b2a9-45dc-9de4-4a8c2e25dbaf", | ||
144 | "image_url": | 144 | "image_url": | ||
145 | wag.ch/fileadmin/Domain1/Abteilungen/surf/projekte/lexplore/Main.gif", | 145 | wag.ch/fileadmin/Domain1/Abteilungen/surf/projekte/lexplore/Main.gif", | ||
146 | "is_organization": true, | 146 | "is_organization": true, | ||
147 | "name": "aquatic-physics", | 147 | "name": "aquatic-physics", | ||
148 | "state": "active", | 148 | "state": "active", | ||
149 | "title": "Aquatic Physics", | 149 | "title": "Aquatic Physics", | ||
150 | "type": "organization" | 150 | "type": "organization" | ||
151 | }, | 151 | }, | ||
152 | "owner_org": "6870be85-b2a9-45dc-9de4-4a8c2e25dbaf", | 152 | "owner_org": "6870be85-b2a9-45dc-9de4-4a8c2e25dbaf", | ||
153 | "private": false, | 153 | "private": false, | ||
154 | "relationships_as_object": [], | 154 | "relationships_as_object": [], | ||
155 | "relationships_as_subject": [], | 155 | "relationships_as_subject": [], | ||
t | 156 | "resources": [], | t | 156 | "resources": [ |
157 | { | ||||
158 | "allowed_users": "[]", | ||||
159 | "cache_last_updated": null, | ||||
160 | "cache_url": null, | ||||
161 | "citation": "", | ||||
162 | "created": "2023-01-30T14:49:43.393352", | ||||
163 | "description": "", | ||||
164 | "format": "ZIP", | ||||
165 | "hash": | ||||
166 | "df549cd8884c6d0cc2d2ec497aa770d1740a5a4b1729b5924e7f2a53a28df7b7", | ||||
167 | "hashtype": "sha256", | ||||
168 | "id": "559ad5ce-93cd-4e9c-8735-774ebaa728a0", | ||||
169 | "last_modified": "2023-01-30T14:49:43.350018", | ||||
170 | "mimetype": "application/zip", | ||||
171 | "mimetype_inner": null, | ||||
172 | "name": "1-Data.zip", | ||||
173 | "package_id": "6e05bf50-9936-4b50-8c2c-1b9e83c7fb35", | ||||
174 | "position": 0, | ||||
175 | "resource_type": "Dataset", | ||||
176 | "restricted_level": "public", | ||||
177 | "size": 7367265803, | ||||
178 | "state": "active", | ||||
179 | "url": | ||||
180 | 35/resource/559ad5ce-93cd-4e9c-8735-774ebaa728a0/download/1-data.zip", | ||||
181 | "url_type": "upload" | ||||
182 | } | ||||
183 | ], | ||||
157 | "state": "active", | 184 | "state": "active", | ||
158 | "tags": [ | 185 | "tags": [ | ||
159 | { | 186 | { | ||
160 | "display_name": "convective plumes", | 187 | "display_name": "convective plumes", | ||
161 | "id": "f9d1a1e1-fddd-476a-906c-282e6938ff0f", | 188 | "id": "f9d1a1e1-fddd-476a-906c-282e6938ff0f", | ||
162 | "name": "convective plumes", | 189 | "name": "convective plumes", | ||
163 | "state": "active", | 190 | "state": "active", | ||
164 | "vocabulary_id": null | 191 | "vocabulary_id": null | ||
165 | }, | 192 | }, | ||
166 | { | 193 | { | ||
167 | "display_name": "density current", | 194 | "display_name": "density current", | ||
168 | "id": "80092d89-9bb5-426d-9209-7798b9d6e7d9", | 195 | "id": "80092d89-9bb5-426d-9209-7798b9d6e7d9", | ||
169 | "name": "density current", | 196 | "name": "density current", | ||
170 | "state": "active", | 197 | "state": "active", | ||
171 | "vocabulary_id": null | 198 | "vocabulary_id": null | ||
172 | }, | 199 | }, | ||
173 | { | 200 | { | ||
174 | "display_name": "differential cooling", | 201 | "display_name": "differential cooling", | ||
175 | "id": "9e6d888f-5020-4875-b8cb-e3db75d2444c", | 202 | "id": "9e6d888f-5020-4875-b8cb-e3db75d2444c", | ||
176 | "name": "differential cooling", | 203 | "name": "differential cooling", | ||
177 | "state": "active", | 204 | "state": "active", | ||
178 | "vocabulary_id": null | 205 | "vocabulary_id": null | ||
179 | }, | 206 | }, | ||
180 | { | 207 | { | ||
181 | "display_name": "interface fluctuations", | 208 | "display_name": "interface fluctuations", | ||
182 | "id": "4da99d6d-00ea-458e-b459-ab2dacbe3cab", | 209 | "id": "4da99d6d-00ea-458e-b459-ab2dacbe3cab", | ||
183 | "name": "interface fluctuations", | 210 | "name": "interface fluctuations", | ||
184 | "state": "active", | 211 | "state": "active", | ||
185 | "vocabulary_id": null | 212 | "vocabulary_id": null | ||
186 | }, | 213 | }, | ||
187 | { | 214 | { | ||
188 | "display_name": "lateral transport", | 215 | "display_name": "lateral transport", | ||
189 | "id": "81bd3ca3-d613-4324-9df8-fa69e532a476", | 216 | "id": "81bd3ca3-d613-4324-9df8-fa69e532a476", | ||
190 | "name": "lateral transport", | 217 | "name": "lateral transport", | ||
191 | "state": "active", | 218 | "state": "active", | ||
192 | "vocabulary_id": null | 219 | "vocabulary_id": null | ||
193 | } | 220 | } | ||
194 | ], | 221 | ], | ||
195 | "title": "Data for: Penetrative Convection Modifies the Dynamics of | 222 | "title": "Data for: Penetrative Convection Modifies the Dynamics of | ||
196 | Downslope Gravity Currents", | 223 | Downslope Gravity Currents", | ||
197 | "type": "dataset", | 224 | "type": "dataset", | ||
198 | "url": "https://doi.org/10.25678/0007PR/", | 225 | "url": "https://doi.org/10.25678/0007PR/", | ||
199 | "version": null | 226 | "version": null | ||
200 | } | 227 | } |