https://doi.org/10.25678/000AD0
You're currently viewing an old version of this dataset. To see the current version, click here.
Aquascope May 2020
Dataset extent
Data and Resources
-
class_and_feat_0p5xMAG_may2020.tar.gzTAR
-
images_0p5xMAG_may2020.tar.gzTAR
-
class_and_feat_5p0xMAG_may2020.tar.gzTAR
-
images_5p0xMAG_may2020.tar.gzTAR
-
README.txtTXT
-
raw_data_5p0xMAG_may2020.tar.gzTAR
-
raw_data_0p5xMAG_may2020_1-7.tar.gzTAR
-
raw_data_0p5xMAG_may2020_8-14.tar.gzTAR
-
raw_data_0p5xMAG_may2020_15-21.tar.gzTAR
-
raw_data_0p5xMAG_may2020_22-end.tar.gzTAR
-
LICENSE
-
LICENSE.txtTXT
Citation
Dennis, S., Merz, E., Reyes, M., Merkli, S., Baity Jesi, M., Kyathanahally, S., et al. (2023). Aquascope May 2020 (Version 1.0). Eawag: Swiss Federal Institute of Aquatic Science and Technology. https://doi.org/10.25678/000AD0
Metadata
| Author |
|
|---|---|
| Keywords | phytoplankton images,zooplankton images,plankton classification,machine learning,time series,image features,plankton communities |
| Taxa (scientific names) |
|
| Organisms (generic terms) |
|
| Timerange |
|
| Geographic Name(s) |
|
| Review Level | domain specific |
| Curator | Dennis, Stuart |
| Contact | Pomati, Francesco <Francesco.Pomati@eawag.ch> |
| DOI | 10.25678/000AD0 |
Open Data