https://doi.org/10.25678/0004P2

Use of different passive sampling approaches for a comprehensive and time-integrated sampling of pesticides in tropical streams in a vegetable growing area

There is a newer version of this dataset.

This package contains the supplementary information (SI) of chapter 2 of the dissertation of Frederik T. Weiss with the Dissertation No. ETH 27434 (defended: 24th February, 2021), entitled: "Pesticides in a tropical Costa Rican stream catchment: from monitoring and risk assessment to the identification of possible mitigation options". Generally within this thesis the supplementary information (SI) is divided into three parts (SI A, SI B, SI C). For each chapter, SI A section contains background information/data for the reader with quick and easy access added directly after each main chapter. SI B contains raw data, further processed data for analysis, and figures of processed data presented as Excel files. SI C combines the R scripts with information and commands utilized for the statistical analysis.

The abstract of chapter 2 reads as follows:

"For monitoring of pesticides in tropical streams, cost-efficient and easily applicable approaches are needed. Moreover, to capture short pesticide concentration peaks, a time-integrated sampling is preferable to conventional snapshot grab sampling. Passive sampling approaches fulfil these criteria. Therefore, this chapter focusses on the application of three passive sampling devices to monitor 275 pesticides and pesticide transformation products (PPTP) in the horticultural Tapezco river catchment over several months in two consecutive years. Two of the samplers were sorbent-based: reverse phase sulfonated styrene-divinylbenzene (SDB) disks and polydimethylsiloxane (PDMS) sheets, yielding biweekly integrated averaged PPTP concentrations. The third sampler was a low-cost, non-sorbent-based, water level proportional sampling system (WLPSS), yielding water level-weighted, biweekly integrated PPTP concentrations. The objectives were to (1) test the performance and robustness of these samplers (2) obtain comprehensive quantitative pesticide concentration data and (3) provide recommendations for their field application in future monitoring campaigns. Of the 275 targeted PPTP, 87 polar and semi-polar PPTP were detected with the SDB method and 99 with the WLPSS, of which 77 were found with both systems. In several cases (10 with SDB, 22 with WLPSS), a pesticide was only detected by one of the set-ups; this exclusive detection could be due to the respective substance concentrations being close to or below the method limit of quantification (MLOQ) for the sampler where it was not detected. Despite the different sampling principles for SDB and WLPSS, the same pesticides (carbendazim and flutolanil) were found with the highest median water concentrations (> 100 ng/L) with both samplers. The complementary PDMS system allowed detection of 11 non-polar pesticides. Among these, cypermethrin, chlorpyrifos and permethrin showed the highest concentrations (> 2 ng/L). Chlorpyrifos was the only pesticide detected with all three sampling techniques. Standard deviations for detected chlorpyrifos concentrations were the highest for SDB sampling, likely due to a lag-phase in sampling across the membrane covering the sampler due to the chemical’s high hydrophobicity. Moreover, derived chlorpyrifos water concentrations were significantly higher using the WLPSS compared to SDB and PDMS sampling. This was also seen for another six pesticides sampled with the WLPSS compared to SDB sampling. Higher concentrations detected via WLPSS can be explained by the ability of the WLPSS to collect pesticide peaks associated with heavy rainfall events and linked to rise of water levels in a more pronounced fashion as compared to the time-integrated sampling manner of the SDB and PDMS samplers. Yet, only a small portion, 15%, of the WLPSS samples collected, could be used to yield water level-weighted, time-integrated concentration (CWLW) data, calling for a need to further optimize and standardize the application of this device. Of the devices tested, the SDB disks were the easiest to apply and the most cost-efficient for short-term monitoring campaigns. The SDB sampling can be conducted in sparsely equipped laboratory facilities, while for the PDMS sheets and the WLPSS, sample preparation and extraction are technically more demanding."

Dataset extent

Data and Resources

Citation

This Data Package

Weiss, F., Ruepert, C., Schirmer, K., Eggen, R., & Stamm, C. (2021). Use of different passive sampling approaches for a comprehensive and time-integrated sampling of pesticides in tropical streams in a vegetable growing area (Version 1.0) [Data set]. Eawag: Swiss Federal Institute of Aquatic Science and Technology. https://doi.org/10.25678/0004P2

The associated article

Metadata

Open Data Open Data
Author
  • Weiss, Frederik
  • Ruepert, Clemens
  • Schirmer, Kristin
  • Eggen, Rik
  • Stamm, Christian
Keywords high resolution mass spectrometry,LC-MS,GC-MS,Chlorpyrifos,Water level proportional sampling,Time proportional sampling,pyrethroids,horticulture
Variables
  • concentration
Substances (scientific names)
  • 2,4-D C8H6Cl2O3
  • 2,6-Dichlorbenzamide C7H5Cl2NO
  • 2-Aminobenzimidazole C7H7N3
  • 2-Methyl-4-amino-6-methoxy-s-triazine C5H8N4O
  • 2-n-Octyl-4-isothiazolin-3-one (OIT) C11H19NOS
  • 3,5,6-Trichloro-2-pyridinol C5H2Cl3N1O1
  • 3,5-dibromo-4-hydroxybenzoic acid C7H4Br2O3
  • 3-Phenoxybenzoic acid C13H10O3
  • 3-Phenoxybenzyl-alcohol C13H12O2
  • 4,5-Dichloro-2-n-octyl-3(2H)-isothiazolone (DCOIT) C11H17Cl2NOS
  • 4-Isopropylaniline C9H13N
  • 5-Chloro-2-methyl-4-isothiazolin-3-one (CMI) C4H4ClNOS
  • Acephate C4H10NO3PS
  • Acetamiprid C10H11ClN4
  • Acetochlor + Alachlor C14H20ClNO2
  • Acetochlor-ESA + Alachlor-ESA C14H21NO5S
  • Acetochlor-OXA + Alachlor-OXA C14H19NO4
  • Aclonifen C12H9ClN2O3
  • Acrinathrin C26H21F6NO5
  • Aldicarb C7H14N2O2S
  • Allethrin C19H26O3
  • Amidosulfuron C9H15N5O7S2
  • Asulam C8H10N2O4S1
  • Atraton C9H17N5O
  • Atrazine C8H14Cl1N5
  • Atrazine-2-hydroxy C8H15N5O
  • Atrazine-6-desisopropyl C5H8ClN5
  • Atrazine-desethyl C6H10ClN5
  • Atrazine-desethyl-2-hydroxy C6H11N5O
  • Azamethiphos C9H10ClN2O5PS
  • Azoxystrobin C22H17N3O5
  • Azoxystrobin acid C21H15N3O5
  • Benalaxyl C20H23NO3
  • Bentazone C10H12N2O3S
  • Benthiavalicarb-isopropyl C18H24FN3O3S
  • Bifenox C14H9Cl2NO5
  • Bifenox acid C13H7Cl2NO5
  • Bifenthrin C23H22ClF3O2
  • Bixafen C18H12Cl2F3N3O
  • Boscalid C18H12Cl2N2O
  • Bromazil C9H13BrN2O2
  • Bromoxynil C7H3Br2N1O1
  • Bronopol C3H6BrN1O4
  • Buprofezin C16H23N3OS
  • Butachlor C17H26ClNO2
  • Carbaryl C12H11NO2
  • Carbendazim C9H9N3O2
  • Carbetamide C12H16N2O3
  • Carbofuran C12H15NO3
  • Chlorantraniliprole C18H14BrCl2N5O2
  • Chlorfenvinphos C12H14Cl3O4P
  • Chloridazon C10H8Cl1N3O1
  • Chloridazone-desphenyl C4H4ClN3O
  • Chloridazone-methyl-desphenyl C5H6ClN3O
  • Chlorothalonil-4-hydroxy C8HN2OCl3
  • Chlorothalonil-4-hydroxy-carbonacid amide C8H3Cl3N2O2
  • Chlorpyrifos C9H11Cl3NO3PS
  • Chlorpyrifos-methyl C7H7Cl3NO3PS
  • Chlortoluron C10H13ClN2O
  • Ciprofloxacin C17H18F1N3O3
  • Clethodim C17H26ClNO3S
  • Clomazone C12H14ClNO2
  • Clothianidin C6H8ClN5O2S
  • Cyazofamid C13H13ClN4O2S
  • Cycloxydim C17H27NO3S
  • Cyflufenamid C20H17F5N2O2
  • Cyhalothrin C23H19ClF3NO3
  • Cymoxanil C7H10N4O3
  • Cypermethrin C22H19Cl2NO3
  • Cyproconazole C15H18ClN3O
  • Cyprodinil C14H15N3
  • Cyromazin C6H10N6
  • Deltamethrin C22H19Br2NO3
  • Desmedipham C16H16N2O4
  • Diazinon C12H21N2O3P1S1
  • Diazoxon C12H21N2O4P1
  • Dicamba C8H6Cl2O3
  • Dichlorprop C9H8O3Cl2
  • Dichlorvos C4H7Cl2O4P
  • Diethyltoluamide (DEET) C12H17NO
  • Difenoconazole C19H17Cl2N3O3
  • Diflufenican C19H11F5N2O2
  • Dimefuron C15H19ClN4O3
  • Dimethachlor C13H18ClNO2
  • Dimethachlor ESA C13H19NO5S
  • Dimethachlor OXA C13H17NO4
  • Dimethenamid C12H18ClNO2S
  • Dimethenamid ESA C12H19N1O5S2
  • Dimethenamid OXA C12H17N1O4S1
  • Dimethoate C5H12NO3PS2
  • Dimethomorph C21H22ClNO4
  • Dinoseb C10H12N2O5
  • Diuron C9H10Cl2N2O1
  • Diuron-desdimethyl C7H6Cl2N2O
  • Diuron-monomethyl (DCPMU) C8H8Cl2N2O
  • Empethrin C18H26O2
  • Epoxiconazole C17H13ClFN3O
  • Erythromycin C37H67NO13
  • Esfenvalerate C25H22ClNO3
  • Ethephon C2H6ClO3P
  • Ethofumesate C13H18O5S1
  • Ethofumesate-2-keto C11H12O5S
  • Ethoprophos C8H19O2PS2
  • Ethylenethiourea (ETU) C3H6N2S
  • Etofenprox C25H28O3
  • Famoxadone C22H18N2O4
  • Fenamidone C17H17N3OS
  • Fenhexamid C14H17Cl2NO2
  • Fenoxycarb C17H19NO4
  • Fenpropathrin C22H23NO3
  • Fenpropidin C19H31N
  • Fenpropimorph C20H33NO
  • Fipronil C12H4Cl2F6N4O1S1
  • Fipronil-desulfinyl C12H4Cl2F6N4
  • Fipronil-sulfide C12H4Cl2F6N4S1
  • Fipronil-sulfone C12H4Cl2F6N4O2S1
  • Flonicamid C9H6F3N3O
  • Fluazifop C15H12F3NO4
  • Fluazinam C13H4Cl2F6N4O4
  • Fludioxonil C12H6F2N2O2
  • Flufenacet C14H13F4N3O2S
  • Flufenacet ESA C11H14F1NO4S1
  • Flufenacet OXA C11H12F1N1O3
  • Flumioxazin C19H15FN2O4
  • Fluopicolide C14H8Cl3F3N2O
  • Fluopyram C16H11ClF6N2O
  • Fluoxastrobin C21H16ClFN4O5
  • Fluroxypyr C7H5Cl2FN2O3
  • Flusilazole C16H15F2N3Si
  • Flutolanil C17H16F3NO2
  • Fluvalinate C26H22ClF3N2O3
  • Folpet C9H4Cl3NO2S
  • Foramsulfuron C17H20N6O7S
  • Fosthiazate C9H18NO3PS2
  • Haloxyfop C15H11ClF3NO4
  • Hexazinone C12H20N4O2
  • Imazalil C14H14Cl2N2O
  • Imazamox C15H19N3O4
  • Imidacloprid C9H10ClN5O2
  • Imidacloprid-desnitro C9H11ClN4
  • Imidacloprid-urea C9H10ClN3O
  • Imiprothrin C17H22N2O4
  • Indoxacarb C22H17ClF3N3O7
  • Iodopropynyl butyl-carbamate (IPBC) C8H12I1N1O2
  • Iodosulfuron-methyl C14H14IN5O6S
  • Ioxynil C7H3I2NO
  • Iprodione C13H13Cl2N3O3
  • Iprovalicarb C18H28N2O3
  • Irgarol C11H19N5S1
  • Irgarol-descyclopropyl C8H15N5S
  • Isoproturon C12H18N2O1
  • Isoproturon-desmethyl C10H14N2O
  • Isoproturon-N-monodemethyl C11H16N2O
  • Isoxadifen-ethyl C18H17NO3
  • Isoxaflutole C15H12F3NO4S
  • Kresoxim-methyl C18H19NO4
  • Lenacil C13H18N2O2
  • Linuron C9H10Cl2N2O2
  • Lufenuron C17H8Cl2F8N2O3
  • Malathion C10H19O6PS2
  • Maleic hydrazide C4H4N2O2
  • Maleic hydrazide C4H4N2O2
  • Mandipropamid C23H22ClNO4
  • MCPA C9H9ClO3
  • MCPB C11H13ClO3
  • Mecoprop C10H11ClO3
  • Medazepam C16H15ClN2
  • Mefenpyr-diethyl C16H18Cl2N2O4
  • Mepanipyrim C14H13N3
  • Mesosulfuron-methyl C17H21N5O9S2
  • Mesotrione C14H13NO7S
  • Mesotrione MNBA C8H7NO6S
  • Metalaxyl C15H21NO4
  • Metaldehyde C8H16O4
  • Metamitron C10H10N4O1
  • Metamitron-desamino C10H9N3O1
  • Metazachlor C14H16ClN3O
  • Metazachlor ESA C14H17N3O4S
  • Metazachlor OXA C14H15N3O3
  • Metconazole C17H22ClN3O
  • Methidathion C6H11N2O4PS3
  • Methiocarb C11H15NO2S
  • Methiocarb-sulfoxide C11H15NO3S
  • Methomyl C5H10N2O2S
  • Methoxyfenozide C22H28N2O3
  • Methyl 2-(amino-sulfonyl)benzoate C8H9NO4S
  • Metolachlor C15H22ClNO2
  • Metolachlor ESA C15H23N1O5S1
  • Metolachlor OXA C15H21N1O4
  • Metolachlor-Morpholinon C14H19N1O2
  • Metoprolol C15H25NO3
  • Metosulam C14H13Cl2N5O4S
  • Metoxuron C10H13ClN2O2
  • Metrafenone C19H21BrO5
  • Metribuzin C8H14N4O1S1
  • Metribuzin-deamino (DA) C8H13N3OS
  • Metribuzin-diketo (DK) C7H12N4O2
  • Metsulfuron-methyl C14H15N5O6S
  • Monocrotophos C7H14NO5P
  • Monolinuron C9H11ClN2O2
  • Monuron C9H11ClN2O
  • Myclobutanil C15H17ClN4
  • N'-(2,4-Dimethyl-phenyl)-N-methyl-formamidine C10H14N2
  • N,N-Dimethyl-N'-p-tolylsulphamide C9H14N2O2S
  • N,N-Dimethyl-N'-phenylsulphamide (DMSA) C8H12N2O2S
  • N,N-Dimethyl-sulfamide C2H8N2O2S
  • N-(2,4-Dimethyl-phenyl)-formamide C9H11NO
  • Napropamide C17H21NO2
  • Nicosulfuron C15H18N6O6S
  • Norfloxacin C16H18F1N3O3
  • Orbencarb C12H16ClNOS
  • Oryzalin C12H18N4O6S
  • Oxamyl C7H13N3O3S
  • Oxasulfuron C17H18N4O6S
  • Oxyfluorfen C15H11ClF3NO4
  • Penconazol C13H15Cl2N3
  • Pencycuron C19H21ClN2O
  • Pendimethalin C13H19N3O4
  • Permethrin C21H20Cl2O3
  • Pethoxamid C16H22ClNO2
  • Phenmedipham C16H16N2O4
  • Phenothrin C23H26O3
  • Picaridin (Icaridin) C12H23NO3
  • Pinoxaden C23H32N2O4
  • Piperonyl butoxide C19H30O5
  • Pirimicarb C11H18N4O2
  • Prochloraz C15H16Cl3N3O2
  • Procymidone C13H11Cl2NO2
  • Profenofos C11H15BrClO3PS
  • Prometon C10H19N5O
  • Prometryn + Terbutryn C10H19N5S
  • Prometryn + Terbutryn C10H19N5S1
  • Propachlor C11H14ClNO
  • Propachlor ESA C11H15N1O4S1
  • Propachlor OXA C11H13N1O3
  • Propamocarb C9H20N2O2
  • Propanil C9H9Cl2NO
  • Propaquizafop C22H22ClN3O5
  • Propazine-2-hydroxy + Terbuthylazine-2-hydroxy C9H17N5O
  • Propiconazole C15H17Cl2N3O2
  • Propoxur C11H15NO3
  • Propyzamide C12H11Cl2NO
  • Proquinazid C14H17IN2O2
  • Prosulfocarb C14H21NOS
  • Prosulfuron C15H16F3N5O4S
  • Prothioconazole-desthio C14H15Cl2N3O
  • Prothiophos C11H15Cl2O2PS2
  • Pymetrozine C10H11N5O
  • Pyraclostrobin C19H18ClN3O4
  • Pyridate C19H23ClN2O2S
  • Pyrimethanil C12H13N3
  • Pyrimidinol C8H12N2O1
  • Pyroxsulam C14H13F3N6O5S
  • Quinoclamine C10H6ClNO2
  • Quizalifop-p C17H13ClN2O4
  • Rimsulfuron C14H17N5O7S2
  • Simazin-2-hydroxy + Terbuthylazine-desethyl-2-hydroxy C7H13N5O1
  • Simazine C7H12ClN5
  • Simeton C8H15N5O1
  • Spirotetramat C21H27NO5
  • Spiroxamine C18H35N1O2
  • Sulcotrione C14H13Cl1O5S1
  • Sulcotrione CMBA C8H7Cl1O4S1
  • Sulfentrazone C11H10Cl2F2N4O3S
  • Sulfosulfuron C16H18N6O7S2
  • Tebuconazole C16H22ClN3O
  • Tebufenozide C22H28N2O2
  • Tebutam C15H23NO
  • Teflubenzuron C14H6Cl2F4N2O2
  • Tefluthrin C17H14ClF7O2
  • Tembotrione C17H16ClF3O6S
  • Tepraloxydim C17H24ClNO4
  • Terbacil C9H13ClN2O2
  • Terbumeton C10H19N5O
  • Terbuthylazine + Sebuthylazine C9H16ClN5
  • Terbuthylazine + Sebuthylazine C9H16ClN5
  • Terbuthylazine-desethyl C7H12Cl1N5
  • Tetramethrin C19H25NO4
  • Thiabendazol C10H7N3S
  • Thiacloprid C10H9ClN4S
  • Thiacloprid-amide C10H11ClN4OS
  • Thiamethoxam C8H10ClN5O3S
  • Thiencarbazone C12H14N4O7S2
  • Thifensulfuron-methyl C12H13N5O6S2
  • Triadimenol C14H18ClN3O2
  • Triazophos C12H16N3O3PS
  • Triazoxide C10H6ClN5O
  • Tribenuron-methyl C15H17N5O6S
  • Triclocarban C13H9Cl3N2O
  • Triclopyr C7H4Cl3NO3
  • Triclosan C12H7Cl3O2
  • Trifloxystrobin C20H19F3N2O4
  • Triflusulfuron-methyl C17H19F3N6O6S
  • Trinexapac-ethyl C13H16O5
  • Tritosulfuron C13H9F6N5O4S
Substances (generic terms)
  • fungicide
  • herbicide
  • insecticide
  • metabolite
  • transformation products
Systems
  • river
  • stream
Timerange
  • 2015-07 TO 2015-10
  • 2016-05 TO 2016-10
Geographic Name(s)
  • Tapezco, Costa Rica
Review Level general
Curator Weiss, Frederik
Contact Frederik.Weiss@eawag.ch
DOI 10.25678/0004P2