https://doi.org/10.25678/000BS7
Aquascope May 2023
Dataset extent
Data and Resources
-
class_and_feat_5p0xMAG_may2023.tar.gzTAR
-
images_5p0xMAG_may2023.tar.gzTAR
-
class_and_feat_0p5xMAG_may2023.tar.gzTAR
-
images_0p5xMAG_may2023.tar.gzTAR
-
README.txtTXT
-
raw_data_5p0xMAG_may2023.tar.gzTAR
-
raw_data_0p5xMAG_may2023_1-7.tar.gzTAR
-
raw_data_0p5xMAG_may2023_8-14.tar.gzTAR
-
raw_data_0p5xMAG_may2023_15-21.tar.gzTAR
-
raw_data_0p5xMAG_may2023_22-end.tar.gzTAR
Citation
Dennis, S., Merz, E., Reyes, M., Merkli, S., Baity Jesi, M., Kyathanahally, S., et al. (2023). Aquascope May 2023 (Version 1.0). Eawag: Swiss Federal Institute of Aquatic Science and Technology. https://doi.org/10.25678/000BS7
Metadata
Author |
|
---|---|
Keywords | phytoplankton images,zooplankton images,plankton classification,machine learning,time series,image features,plankton communities |
Taxa (scientific names) |
|
Organisms (generic terms) |
|
Timerange |
|
Review Level | domain specific |
Curator | Dennis, Stuart |
Contact | Pomati, Francesco <Francesco.Pomati@eawag.ch> |
DOI | 10.25678/000BS7 |